首页

欢迎

 

Welcome

欢迎, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

概率统计 >> 概率论
Questions in category: 概率论 (Probability).

[Exer13-4] Exercise 73 of Book {Devore2017B} P.185

Posted by haifeng on 2020-05-13 10:08:03 last update 2020-05-18 09:18:27 | Answers (1)


A theoretical justification based on a certain material failure mechanism underlies the assumption that ductile strength(延展强度) $X$ of a material has a lognormal distribution.

[基於某種材料失效機制的理論論證是以假定材料的延展強度 $X$ 具有對數正態分佈為基礎。]

Suppose the parameters are $\mu=5$ and $\sigma=.1$.

  • (a) Compute $E(X)$ and $V(X)$.
  • (b) Compute $P(X > 120)$.
  • (c) Compute $P(110\leqslant X\leqslant 130)$.
  • (d) What is the value of median ductile strength?
  • (e) If ten different samples of an alloy steel(合金鋼) of this type were subjected to a strength test, how many would you expect to have strength at least $120$?
  • (f) If the smallest $5\%$ of strength values were unacceptable, what would the minimum acceptable strength be?